When are the endomorphism rings of ideals Gorenstein?

Naoki Endo

Tokyo University of Science

based on the recent works jointly with

S. Goto, S.-i. Iai, and N. Matsuoka

Commutative Algebra and Algebraic Geometry Seminar at CUNY

March 18, 2022

1. Introduction

This talk is based on the recent research below.

• When are the rings I: I Gorenstein?, arXiv:2111.13338 (with S. Goto, S.-i. Iai, and N. Matsuoka)

Let (R, \mathfrak{m}) be a Noetherian local ring with depth R > 0.

Problem 1.1

When is $\operatorname{End}_R(\mathfrak{m}) = \mathfrak{m} : \mathfrak{m}$ Gorenstein?

2 / 28

- If $\dim R = 1$, then
- $\mathfrak{m}:\mathfrak{m}$ is a Gorenstein ring $\iff R$ is almost Gorenstein ring and $\nu(R)=\mathrm{e}(R)$
 - If dim $R \ge 2$, then depth $R \ge 2$ if and only if $\mathfrak{m} : \mathfrak{m} = R$. Hence, provided depth $R \ge 2$,

 $\mathfrak{m}:\mathfrak{m}$ is a Gorenstein ring $\iff R$ is a Gorenstein ring.

How about the case where dim $R \ge 2$ and depth R = 1?

Key idea

- \circ (S_2)-ifications
- trace ideals

- If $\dim R = 1$, then
- $\mathfrak{m}:\mathfrak{m}$ is a Gorenstein ring $\iff R$ is almost Gorenstein ring and $\nu(R)=\mathrm{e}(R)$
 - If dim $R \ge 2$, then depth $R \ge 2$ if and only if $\mathfrak{m} : \mathfrak{m} = R$. Hence, provided depth $R \ge 2$,

 $\mathfrak{m}:\mathfrak{m}$ is a Gorenstein ring $\iff R$ is a Gorenstein ring.

How about the case where dim $R \ge 2$ and depth R = 1?

Key ideas

- (S₂)-ifications
- trace ideals

2. Basic results on (S_2) -ifications

Throughout this talk, let

- R an arbitrary commutative Noetherian ring
- Q(R) the total ring of fractions of R
- $\operatorname{Ht}_{\geq 2}(R) = \{I \mid I \text{ is an ideal of } R, \operatorname{ht}_R I \geq 2\}$
- $W(R) = \{a \in R \mid a \text{ is a non-zerodivisor on } R\}$

We fix a Q(R)-module V and an R-submodule M of V.

Define

$$M \subseteq \widetilde{M} = \{ f \in V \mid If \subseteq M \text{ for some } I \in Ht_{\geq 2}(R) \} \subseteq V.$$

- If L is an R-submodule of V and $M \subseteq L$, then $\widetilde{M} \subseteq \widetilde{L}$.
- \widetilde{R} considered inside Q(R) is an intermediate ring $R \subseteq \widetilde{R} \subseteq Q(R)$.
- \widetilde{M} is an \widetilde{R} -submodule of V.

→□▶→□▶→□▶→□▶ □ ≪

Let $a, b \in R$ and N an R-module. The pair a, b is called N-sequence, if a is a N-NZD and b is a N/aN-NZD.

Here, we don't require $N/(a,b)N \neq (0)$.

Lemma 2.1

Let $a, b \in W(R)$. If $ht_R(a, b) \ge 2$, then the pair a, b is M-sequence.

(Proof) Let $f \in \widetilde{M}$ and assume bf = ag for some $g \in \widetilde{M}$. Set $x = \frac{f}{a} = \frac{g}{b}$, and choose $I, J \in \operatorname{Ht}_{\geq 2}(R)$ so that $If + Jg \subseteq M$. Then

$$(Ia + Jb)x \subseteq M$$

whence $x \in \widetilde{M}$ because $Ia + Jb \in Ht_{\geq 2}(R)$.

40.40.41.41.11.11.000

Proposition 2.2

Suppose that one of the following conditions is satisfied.

- (1) Q(R)M = V.
- (2) $\operatorname{ht}_R \mathfrak{p} \leq 1$ for $\forall \mathfrak{p} \in \operatorname{Ass} R$.

Then

$$M = \widetilde{M} \iff \text{every pair } a, b \in W(R) \text{ with } \operatorname{ht}_R(a, b) \geq 2 \text{ is } M\text{-sequence}.$$

(Proof) Assume $M \neq M$ and consider Z = M/M. Let $\mathfrak{p} \in \mathsf{Ass}_R Z$ and write $\mathfrak{p} = M :_R f$ for some $f \in \widetilde{M} \setminus M$. Choose $I \in \mathsf{Ht}_{\geq 2}(R)$ s.t. $If \subseteq M$. Then $I \subseteq \mathfrak{p}$. Notice that

$$af \in M$$
 for some $a \in W(R)$.

Therefore, $\operatorname{ht}_R(a,b) \geq 2$ for some $b \in W(R) \cap \mathfrak{p}$, whence a,b is M-sequence. So

$$0 \rightarrow (0):_{Z} a \stackrel{\sigma}{\rightarrow} M/aM \rightarrow \widetilde{M}/a\widetilde{M} \rightarrow Z/aZ \rightarrow 0$$

where $b\sigma(\overline{f}) = \sigma(\overline{bf}) = 0$, because $bf \in M$. Thus $\sigma(\overline{f}) = 0$, so that $f \in M$. This is impossible.

Corollary 2.3

Suppose that one of the following conditions is satisfied.

- (1) Q(R)M = V.
- (2) $\operatorname{ht}_R \mathfrak{p} \leq 1$ for $\forall \mathfrak{p} \in \operatorname{Ass} R$.

Then the following assertions hold true.

- (a) $\widetilde{\widetilde{M}} = \widetilde{M}$.
- (b) Let $M \subseteq L \subseteq V$ be an R-submodule of V. If every pair $a, b \in W(R)$ with $\operatorname{ht}_R(a,b) \geq 2$ is L-sequence, then $\widetilde{M} \subseteq \widetilde{L} = L$.

Recall that a finitely generated R-module N satisfies (S_n) , if

$$\operatorname{depth}_{R_{\mathfrak{p}}} N_{\mathfrak{p}} \geq \min\{n, \dim R_{\mathfrak{p}}\} \text{ for } \forall \mathfrak{p} \in \operatorname{\mathsf{Supp}}_R N.$$

Theorem 2.4

Suppose R satisfies (S_1) . If \widetilde{M} is a finitely generated R-module, then \widetilde{M} is the smallest R-submodule of V which contains M and satisfies (S_2) .

Corollary 2.5

Suppose R satisfies (S_1) . If \widetilde{R} is a finitely generated R-module, then \widetilde{R} is the smallest module-finite birational extension of R satisfying (S_2) .

Corollary 2.6

If R satisfies (S_2) , then $R = \widetilde{R}$.

In the rest of this section, we assume

- *M* is a finitely generated *R*-module,
- Q(R)M = V, and
- $(0):_{Q(R)}V=(0).$

Note that, every $f \in V$ has the form $f = \frac{m}{a}$ with $a \in W(R)$ and $m \in M$.

Let $a \in W(R)$ and let

$$aM = \bigcap_{\mathfrak{p} \in \mathsf{Ass}_R \ M/aM} Q(\mathfrak{p})$$

be a primary decomposition of aM in M. Set

$$\mathsf{U}(\mathsf{a}M) = \begin{cases} M & \text{if } \mathsf{a}M = M, \\ \bigcap_{\mathfrak{p} \in \mathsf{Min}_{\mathcal{R}} \, M/\mathsf{a}M} \mathsf{Q}(\mathfrak{p}) & \text{if } \mathsf{a}M \neq M. \end{cases}$$

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ● りへで

Theorem 2.7

Let $a \in W(R)$ and $m \in M$. Then $\frac{m}{a} \in \widetilde{M}$ if and only if $m \in U(aM)$.

(Proof) May assume $aM \neq M$. Suppose $\frac{m}{a} \in \widetilde{M}$ and choose $I \in \operatorname{Ht}_{\geq 2}(R)$ so that $I \subseteq aM :_R m$. Let $\mathfrak{p} \in \operatorname{Min}_R M/aM$. Since $\operatorname{ht}_R \mathfrak{p} = 1$, $aM :_R m \not\subseteq \mathfrak{p}$, whence

$$m \in [aM]_{\mathfrak{p}} \cap M = Q(\mathfrak{p}).$$

Hence, $m \in U(aM)$.

Conversely, suppose $m \in U(aM)$. If aM = U(aM), then $m \in aM$, so $\frac{m}{a} \in \widetilde{M}$. May assume $aM \neq U(aM)$. Consider $\mathcal{F} = (\operatorname{Ass}_R M/aM) \setminus (\operatorname{Min}_R M/aM)$. Then, $\mathcal{F} \neq \emptyset$ and for each $\mathfrak{p} \in \mathcal{F}$,

$$\exists \ \ell = \ell(\mathfrak{p}) \gg 0 \ \text{ s.t. } \mathfrak{p}^{\ell} M \subseteq Q(\mathfrak{p}).$$

By setting $\mathfrak{a} = \prod_{\mathfrak{p} \in \mathcal{F}} \mathfrak{p}^{\ell(\mathfrak{p})} \in \mathsf{Ht}_{\geq 2}(R)$, we have

$$\mathfrak{a} U(aM) \subseteq \bigcap Q(\mathfrak{p}) \cap U(aM) = aM.$$

Hence $\frac{U(aM)}{a} \subseteq \widetilde{M}$, as desired.

Therefore, if $\widetilde{M} \subseteq \frac{M}{a}$ for some $a \in W(R)$, then $\widetilde{M} = \frac{U(aM)}{a}$.

10 / 28

3. Trace ideals

Let M, X be R-modules. Consider the homomorphism

$$\tau: \operatorname{Hom}_R(M,X) \otimes_R M \to X, \ f \otimes m \mapsto f(m)$$

where $f \in \operatorname{Hom}_R(M,X)$ and $m \in M$.

We set $Tr_X(M) = Im \tau$ and call it the trace module of M in X.

Proposition 3.1 (Lindo)

Let I be an ideal of R. Then TFAE.

- (1) I is a trace ideal in R, i.e., $I = Tr_R(M)$ for some R-module M.
- (2) $I = Tr_R(I)$.
- (3) The embedding $\iota: I \to R$ induces $\operatorname{Hom}_R(I, I) \cong \operatorname{Hom}_R(I, R)$.

When I contains a non-zerodivisor on R, one can add the following.

(4)
$$I:I=R:I$$
.

1. Introduction 2. Basic results on (S2)-ifications 3. Trace ideals 4. Main results 5. Gorenstein Rees algebras 6. Examples

4. Main results

For a Noetherian local ring (A, \mathfrak{m}) , we set

$$\operatorname{\mathsf{Assh}} A := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} A \mid \dim A/\mathfrak{p} = \dim A \} \subseteq \operatorname{\mathsf{Min}} A \subseteq \operatorname{\mathsf{Ass}} A.$$

Recall that A is unmixed (quasi-unmixed), if Ass $\widehat{A} = \operatorname{Assh} \widehat{A}$ (Min $\widehat{A} = \operatorname{Assh} \widehat{A}$).

Lemma 4.1

Let A be a Noetherian ring. Let $A \subseteq B \subseteq Q(A)$ be a subring of Q(A) s.t. B is a finitely generated A-module. Let I be an ideal of B s.t. $I \subseteq A$ and $ht_A I \ge 2$. If A is locally quasi-unmixed and B satisfies (S_2) , then I is a trace ideal in A and B = I : I.

(Proof) Since A is locally quasi-unmixed, $\operatorname{ht}_B P = \operatorname{ht}_A(P \cap A)$ for $\forall P \in \operatorname{Spec} B$, so that $\operatorname{ht}_B I \geq 2$, whence $\operatorname{grade}_B I \geq 2$ because B satisfies (S_2) . Therefore, B = I : I, so that

$$A:I\subseteq B:I=B=I:I\subseteq A:I.$$

12 / 28

This implies I:I=A:I. Hence I is a trace ideal in A.

Proposition 4.2

Let A be a Noetherian local ring and I $(\neq A)$ an ideal of A with $ht_A I \geq 2$. Assume that $\exists K_A$ and there exists an exact sequence

$$0 \rightarrow A \rightarrow K_A \rightarrow C \rightarrow 0$$
 s.t. $IC = (0)$.

Then the following assertions hold true.

- (1) $\widetilde{A} \cong K_A$ as an A-module.
- (2) $\operatorname{Hom}_A(\widetilde{A}, K_A) \cong \widetilde{A}$ as an \widetilde{A} -module.
- (3) If K_A is a CM A-module, then \widetilde{A} is a Gorenstein ring.
- (4) If I is a trace ideal in A, then $\widetilde{A} = I : I$.

Corollary 4.3

Let (A, \mathfrak{m}) be a Noetherian local ring with $d = \dim A$. Let $A \subseteq B \subseteq Q(A)$ be a subring of Q(A) s.t. B is a finitely generated A-module. We set $\mathfrak{a} = A : B$ and assume the following.

- (1) A is a quasi-unmixed ring.
- (2) $\operatorname{ht}_{A} \mathfrak{a} \geq 2$.
- (3) B is a Gorenstein ring.

Then the following assertions hold true.

- (a) B = A, depth_A B = d, \mathfrak{a} is a trace ideal in A, and $B = \mathfrak{a} : \mathfrak{a}$.
- (b) $\exists K_A \text{ and } K_A \cong B \text{ as an } A\text{-module.}$
- (c) A = B if and only if A is a CM local ring.

(Proof) We have $B = \mathfrak{a} : \mathfrak{a}$ and \mathfrak{a} is a trace ideal in A. Since $\operatorname{ht}_B M = \operatorname{ht}_A \mathfrak{m} = d$ for $\forall M \in \operatorname{Max} B$, every sop of A forms a regular sequence on B_M , so that it forms a regular sequence on B. Hence, $\operatorname{depth}_A B = d$.

Let C = B/A. Then $\dim_A C \leq d-2$ since $\mathfrak{a}C = (0)$, so that

$$H^d_{\mathfrak{m}}(A) \cong H^d_{\mathfrak{m}}(B).$$

Therefore, $K_{\widehat{A}} \cong \widehat{A} \otimes_A B$ as an \widehat{A} -module, whence

 $\exists K_A \text{ and } K_A \cong B \text{ as an } A\text{-module}.$

We have $B \subseteq \widetilde{A}$ since $\operatorname{ht}_A \mathfrak{a} \ge 2$, while $\widetilde{A} \subseteq \widetilde{B} = B$. Hence, $B = \widetilde{A}$.

Suppose A is a CM ring. Then depth_A $C \ge d-1$, which forces C = (0) because $\dim_A C \le d-2$. Hence, A = B.

Theorem 4.4 (Main theorem)

Let A be a Noetherian local ring with $d=\dim A\geq 2$. Suppose that A is quasi-unmixed. Let I ($\neq A$) be an ideal of A with $\operatorname{ht}_A I\geq 2$ and $I\cap W(A)\neq \emptyset$. Set B=I:I. Then TFAF.

- (1) B is a Gorenstein ring.
- (2) $\exists K_A$ and I is a trace ideal in A s.t. (i) K_A is a CM A-module and (ii) there exists an exact sequence

$$0 \rightarrow A \rightarrow K_A \rightarrow C \rightarrow 0$$
 s.t. $IC = (0)$.

(3) depth_A B = d, $\exists K_A$, and $B \cong K_A$ as an A-module.

When this is the case, A is unmixed, $B = \widetilde{A}$, and $\mathfrak{a} = A$: B is a trace ideal in A with $B = \mathfrak{a}$: \mathfrak{a} .

Corollary 4.5

Let A be a Noetherian local ring with $d = \dim A \ge 2$. Let $I \ne A$ be an ideal of A with $\operatorname{ht}_A I > 2$ and $I \cap W(A) \ne \emptyset$. Set B = I : I. Then TFAE.

- (1) B is a Gorenstein ring, A is a homomorphic image of a CM ring, and Min A = Assh A.
- (2) $\exists K_A$ and I is a trace ideal in A s.t. (i) K_A is a CM A-module and (ii) there exists an exact sequence

$$0 \rightarrow A \rightarrow K_A \rightarrow C \rightarrow 0$$
 s.t. $IC = (0)$.

(3) depth_A B = d, $\exists K_A$, and $B \cong K_A$ as an A-module.

When this is the case, A is unmixed, $B = \widetilde{A}$, and $\mathfrak{a} = A : B$ is a trace ideal in A with $B = \mathfrak{a} : \mathfrak{a}$.

5. Gorenstein Rees algebras

Let (A, \mathfrak{m}) be a Noetherian local ring with $d = \dim A \geq 2$ and $t = \operatorname{depth} A \geq 1$. For each ideal I of A, we set

$$\mathcal{R}_A(I) = A[It] = \sum_{n \ge 0} I^n t^n \subseteq A[t]$$

and call it the Rees algebra of I.

Example 5.1 (Hochster-Roberts)

Let $A = k[[x^2, y, x^3, xy]] \subseteq k[[x, y]]$ and $Q = (x^2, y)$. Then A is not CM, but

$$\mathcal{R}_A(Q^2) = A[Q^2t] = A[x^4t, x^2yt, y^2t] \subseteq A[t]$$

is a Gorenstein ring.

Theorem 5.2 (Shimoda)

Suppose dim A=2 and depth A=1. Let Q=(a,b) be a parameter ideal of A. Then TFAE.

- (1) $\mathcal{R}_A(Q^2)$ is a Gorenstein ring.
- (2) (a) $a, b \in W(A)$,
 - (b) $[(a):b] \cap [(b):a] = (a) \cap (b)$, and
 - (c) A/[(ab) + a[(a) : b] + b[(b) : a]] is a Gorenstein ring.

Question 5.3

Let Q be a parameter ideal of A. When is $\mathcal{R}_A(Q^d)$ a Gorenstein ring?

• If A is a CM local ring, then $\mathcal{R}_A(Q^d)$ is NOT a Gorenstein ring. (Goto-Nishida, Goto-Shimoda, Ikeda)

Theorem 5.4 (Goto-lai)

Suppose $H^i_{\mathfrak{m}}(A) = (0)$ for $\forall i \notin \{1, d\}$ and $H^1_{\mathfrak{m}}(A)$ is a finitely generated A-module. Let $Q = (a_1, a_2, \ldots, a_d)$ be a parameter ideal of A. Then TFAE.

- (1) $\mathcal{R}_A(Q^d)$ is a Gorenstein ring.
- (2) $H^1_{\mathfrak{m}}(A) \neq (0)$, $r_A(H^1_{\mathfrak{m}}(A)) = 1$, and $(0) :_A H^1_{\mathfrak{m}}(A) = \sum_{i=1}^d U(a_i A)$.

When this is the case, \widetilde{A} is a Gorenstein ring.

Theorem 5.5

Let (A, \mathfrak{m}) be a Noetherian complete local ring s.t. $d = \dim A \geq 2$, depth A = 1, and $\dim A = \operatorname{Assh} A$. Let I be an \mathfrak{m} -primary ideal of A. We set B = I : I and $\mathfrak{a} = A : B$, and assume the following conditions.

- (1) B is a Gorenstein ring.
- (2) $A \neq B$ and $r_A(B/A) = 1$
- (3) $\mathfrak{a} = (a_1, a_2, ..., a_d)B$ for some $a_1, a_2, ..., a_d \in \mathfrak{m}$.

Then, $B = \mathfrak{a} : \mathfrak{a}$ and $\mathcal{R}_A(Q^d)$ is a Gorenstein ring, where $Q = (a_1, a_2, \dots, a_d)$.

(Proof) We have $B = \mathfrak{a} : \mathfrak{a}$. As $I \cdot (B/A) = (0)$, applying $H_{\mathfrak{m}}^{i}(*)$ to the sequence

$$0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0$$

we get $H^1_{\mathfrak{m}}(A) \cong B/A$ and $H^i_{\mathfrak{m}}(A) = (0)$ for $\forall i \notin \{1, d\}$. Hence

$$(0):_A\mathsf{H}^1_\mathfrak{m}(A)=\mathfrak{a}\quad\text{and}\quad \mathrm{r}_A(\mathsf{H}^1_\mathfrak{m}(A))=1.$$

Since depth_A B = d and a_1, a_2, \ldots, a_d forms a system of parameters in A, the sequence a_1, a_2, \ldots, a_d is B-regular. Hence

$$a_i \in W(A)$$
 and $a_i B \subseteq A$ for $1 \leq \forall i \leq d$

so that $B = \widetilde{A} \subseteq \frac{A}{a_i}$, whence $B = \frac{U(a_i A)}{a_i}$. Hence

$$\mathfrak{a} = \sum_{i=1}^d a_i B = \sum_{i=1}^d \mathsf{U}(a_i A).$$

Consequently, $\mathcal{R}_A(Q^d)$ is a Gorenstein ring.

□▶ ◀♬▶ ◀틸▶ ◀ 틸 → 의 Q (C)

6. Examples

Let

- (S, \mathfrak{n}) a Gorenstein complete local ring with $d = \dim S \geq 2$
- S contains a field k
- ullet $\mathfrak{q}=(a_1,a_2,\ldots,a_d)$ a parameter ideal of S s.t. $\mathfrak{q}
 eq\mathfrak{n}$
- $\bullet \ A = k + \mathfrak{q}$

Then, A is a subring of S, and \mathfrak{q} is a maximal ideal in A. We have

$$\ell_A(S/A) = \ell_A(S/\mathfrak{q}) - 1 < \infty.$$

Therefore, S is a finitely generated A-module, so that

A is a Noetherian complete local ring with dim A = d and depth A = 1.

Theorem 6.1

If
$$\ell_S(S/\mathfrak{q})=2$$
, then $\mathcal{R}_A(Q^d)$ is a Gorenstein ring, where $Q=(a_1,a_2,\ldots,a_d)A$.

Example 6.2

Let
$$S=k[[X_1,X_2,\ldots,X_d]]$$
 $(d\geq 2)$ and $\mathfrak{q}=(X_1^2,X_2,\ldots,X_d)S.$ Then

$$\mathcal{R}_A(Q^d)$$
 is a Gorenstein ring

where
$$A = k + \mathfrak{q}$$
 and $Q = (X_1^2, X_2, \dots, X_d)A$.

Let

- B = k[[t, s]] the formal power series ring over a field k
- $P = k[[H]] \subsetneq V = k[[t]]$, where H is a symmetric numerical semigroup
- $c = P : V = t^c V, 0 < c \in H$
- $A = P + sB \subseteq B$
- $a = A : B = c + sB = (t^c, s)B$

Then

A is a Noetherian complete local ring with dim A = 2 and depth A = 1.

We set $Q = (t^c, s)$. Then, Q is a parameter ideal of A.

Theorem 6.3

The Rees algebra $\mathcal{R}_A(Q^2)$ is a Gorenstein ring.

Let

- S a Gorenstein complete local ring with $d = \dim S \ge 2$
- $\mathfrak{q} = (a_1, a_2, \dots, a_d)$ a parameter ideal of S
- $A = S \times_{S/\mathfrak{q}} S = \{(x, y) \in S \times S \mid x \equiv y \mod \mathfrak{q}\}$

Then

A is a Noetherian complete local ring with dim A=d and depth A=1

Let $\alpha_i = (a_i, a_i) \in A$ for each $1 \le i \le d$ and set $Q = (\alpha_1, \alpha_2, \dots, \alpha_d)$. Then, Q is a parameter ideal of A.

Theorem 6.4

The Rees algebra $\mathcal{R}_A(Q^d)$ is a Gorenstein ring.

Example 6.5

Let $U = k[[X_1, X_2, ..., X_d, Y_1, Y_2, ..., Y_d]]$ $(d \ge 2)$ and set

$$A = U/[(X_1, X_2, ..., X_d) \cap (Y_1, Y_2, ..., Y_d)] \cong S \times_k S$$

where $S = k[[X_1, X_2, ..., X_d]].$

For each $1 \le i \le d$, let z_i denote the image of $X_i + Y_i$ in A. Then

$$\mathcal{R}_{A}(Q^{d})$$
 is a Gorenstein ring

where
$$Q = (z_1, z_2, ..., z_d)$$
.

1. Introduction 2. Basic results on (S_2) -ifications 3. Trace ideals 4. Main results 5. Gorenstein Rees algebras 6. Examples

Thank you for your attention.